Answer:
Option D
Explanation:
In SHM , a particle starts from rest, we have
i.e, $x=A\cos \omega t,$ at t=0,x=A
when $ t=\tau$ then x=A-a .......(i)
when $t=2\tau$ , then x=A-3a .......(ii)
On comparing Eqs. (i) and (ii), we get
$A-a=A\cos \omega \tau$
$A-3a=A\cos 2\omega \tau$
As $\cos2 \omega t=2\cos^{2}\tau-1$
$\Rightarrow$ $\frac{A-3a}{A}=2\left(\frac{A-a}{A}\right)^{2}-1$
$\Rightarrow$ $\frac{A-3a}{A}=\frac{2A^{2}+2a^{2}-4Aa-A^{2}}{A^{2}}$
$A^{2}-3aA=A^{2}+2a^{2}-4Aa$
$a^{2}=2aA$
A=2a
Now, $A-a=A\cos\omega\tau$
$\Rightarrow$ $\cos\omega\tau=1/2$
$\frac{2\pi}{T}\tau=\frac{\pi}{3}$
$\Rightarrow $ $ T=6\pi$